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Abstract

Candida albicans is a normal member of the human microbiome and an opportunistic fungal

pathogen. This species undergoes several morphological transitions, and here we consider

white-opaque switching. In this switching program, C. albicans reversibly alternates

between two cell types, named “white” and “opaque,” each of which is normally stable

across thousands of cell divisions. Although switching under most conditions is stochastic

and rare, certain environmental signals or genetic manipulations can dramatically increase

the rate of switching. Here, we report the identification of two new inputs which affect white-

to-opaque switching rates. The first, exposure to sub-micromolar concentrations of (E,E)-

farnesol, reduces white-to-opaque switching by ten-fold or more. The second input, an

inferred PKA phosphorylation of residue T208 on the transcriptional regulator Efg1,

increases white-to-opaque switching ten-fold. Combining these and other environmental

inputs results in a variety of different switching rates, indicating that a given rate represents

the integration of multiple inputs.

Introduction

Candida albicans is both a member of the human microbiome in healthy individuals and an

opportunistic pathogen, causing diseases of varying severity, especially in individuals with a

compromised immune system. These diseases can range from yeast infections and thrush to

systemic bloodstream infections with fatality rates exceeding 40% [1–11]. C. albicans is also a

polymorphic yeast that undergoes several distinct cell type switching programs. One of these is

white-opaque switching, where C. albicans alternates between two cell types, named “white”

and “opaque,” each of which exhibits distinct cellular and colony morphologies [12–19].

Switching between these two cell types is reversible and occurs without any chromosomal rear-

rangements or sequence changes [20]. Approximately one-sixth of the transcriptome is
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differentially regulated at least two-fold between white and opaque cells [21, 22], resulting in

distinct metabolic preferences [21, 23, 24], capacities to mate [25], interactions with the innate

immune system [26–30], and abilities to colonize and persist in different organs in the host

[31]. The two cell types also respond to environmental cues in different ways; for example, the

signals that induce white cells to form filaments are different from those that induce filamenta-

tion in opaque cells. Similarly, intermediate concentrations (roughly 40 μM) of the quorum

sensing molecule (E,E)-farnesol are toxic to opaque cells while having little or no effect on

white cells [32–35].

The stability of both cell types is a defining feature of the white-opaque switching program.

Under standard laboratory conditions, switching between these two cell types occurs stochasti-

cally approximately once every 104 cell divisions [36, 37]. Switching between the two cell types

is controlled by a circuit with eight transcriptional regulators connected by interlocking feed-

back loops, with Efg1 and Wor1 being especially important for the establishment and mainte-

nance of the white and opaque cell types respectively [38–50]. Switching rates between the two

cell types are dependent on numerous signaling pathways, including the cAMP/protein kinase

A pathway [23, 51–53], the Hog1 pathway [54–56], the Cek1 MAP kinase pathway [51, 55],

and others [51, 57–65]. Environmental conditions that trigger these pathways also affect this

switch, including elevated temperature and exposure to N-acetylglucosamine (GlcNAc) [12,

23, 36, 66]. Taken as a whole, the published literature demonstrate that white-opaque switch-

ing rates are highly responsive to many aspects of C. albicans’ physiology.

Here, we report two additional inputs that affect the rates of white-opaque switching,

namely sub-micromolar concentrations of (E,E)-farnesol and an inferred PKA phosphoryla-

tion of the transcriptional regulator Efg1. We describe how switching rates change in response

to these two inputs, both by themselves and in combination with the environmental inputs

GlcNAc and elevated temperature. Our results show that white-opaque switching rates reflect

a complex combination of inputs, including the two described in this work, that is integrated

to give a prescribed switching rate matched to a given set of conditions.

Materials and methods

Media and growth conditions

Unless otherwise noted, strains were grown and assays were performed on synthetic complete

defined media plates containing yeast nitrogen base with 0.5% ammonium sulfate (6.7 g/L, BD

#291940), amino acids (2 g/L), uridine (100 μg/mL), 2% glucose, and 2% agar (SCD+aa+Uri);

2% GlcNAc (Sigma #A3286) was added instead of glucose when relevant (SCGlcNAc+aa

+Uri). Farnesol plates (e.g. SCD+aa+Uri+FOH) were made as follows. Following the autoclave

step, the media was allowed to cool on a magnetic stir plate per our normal protocol. Before

the media was poured into plates, the diluted farnesol solution (or equivalent volume of meth-

anol for negative controls) was added to the media and stirred for an additional five to ten

minutes. At this point, the media was poured into plates and allowed to cool and solidify over-

night. Farnesol plates were always used in assays starting the day immediately after the day on

which they were poured.

(E,E)-farnesol (trans,trans-3,7,11-Trimethyl-2,6,10-dodecatrien-1-ol, CAS number 106-28-

5, Sigma #277541) requires special handling in order to remain effective. In brief, we have

found that, even if initially aliquoted under anaerobic conditions, farnesol stock solutions

stored in ambient air began to have reduced efficacy after one or two months. To avoid this

issue, farnesol stock vials were only stored or worked with in an anaerobic chamber and all far-

nesol stock vials were discarded no more than two months after opening regardless of their fre-

quency of usage. Dilutions, in methanol (Sigma #34860), were made in the anaerobic chamber
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on the day they were needed. To verify the effectiveness of the farnesol stocks used for each

assay, we confirmed that a 10 μM farnesol solution diluted from that stock inhibited white cell

filamentation in parallel with each farnesol assay. We do not expect farnesol efficacy to have

changed during switching assays as the farnesol plates were exposed to air for a maximum of

eight days from pouring to the end of said assays.

Efg1 site location confirmation

The reported locations of the putative Cdc28:Hgc1 phosphorylation site at Threonine 179 [67]

and putative PKA at phosphorylation site Threonine 206 [68, 69] do not correspond to Threo-

nine residues in either the A or B alleles of Efg1 in the current C. albicans SC5314 Assembly 22

at the Candida Genome Database (CGD, candidagenome.org); instead, those residues are a

glutamine and an arginine respectively. Based on the reported sequences of the regions imme-

diately surrounding these two residues, we determined that they correspond to residues 181

(177-MQQPTPVQD-185) and 208 (204-RPRVTTTMW-212) in both Assembly 22 Efg1

alleles. To further verify this assignment, we aligned the original Efg1 sequence (GenBank

accession Z32687) with both copies of the Assembly 19 and 22 SC5314 alleles as well as the

WO-1 allele retrieved from CGD. This alignment revealed that the Z32687 sequence was miss-

ing, relative to the other strains, two alanine residues from a stretch of five alanines at residues

55–59; this accounts for the two amino acid difference between the initially reported (and still

commonly listed) locations and the locations in the current genome assembly. We also note

that one of the two Assembly 19 alleles and the WO-1 sequence differ by one amino acid (e.g.

the putative phosphorylation sites are located at residues 180 and 207) due to the loss of one

glutamine from a run of 11 glutamines at residues 85–95. Given the basis of the difference

between the initially reported and current locations of the putative phosphorylation sites, we

will name them based on the current genomic data and thus refer to them as Threonine 181

and Threonine 208, respectively.

Strain construction

Lists of strains, plasmids, and oligonucleotides used in this study can be found in S1 File. The

SC5314-derived C. albicans wild type white and opaque strains used in this study have been

previously reported [46], in brief these are HIS1 and LEU2 addbacks to the SN152 a/α his1
leu2 arg4 strain [70] that were then converted to the switching capable a/Δ background by

deletion of the α copy of the Mating Type Like (MTL) locus using pJD1 [71].

The Efg1 T181 and T208 homozygous alanine and glutamic acid substitutions were con-

structed at the endogenous Efg1 locus in the wild type white strain utilizing the SAT1 marker-

based CRISPR protocol targeting Candida maltosa LEU2 described by Nguyen and colleagues

[72]. In brief, the 90bp-annealed donor DNA (dDNA) contains homology to the regions

directly upstream and downstream of the targeted residue. Integration was confirmed by col-

ony PCR and codon conversion was then confirmed by sequencing. For the czf1 deletion con-

struction in the wild type and Efg1 T208E strain backgrounds, the 90bp-annealed donor DNA

(dDNA) contains homology to the regions directly upstream and downstream of the CZF1
ORF. Each dDNA homology arm consisted of 44bp and the two arms were separated by a two

base pair GG insert to create a potential gRNA site. Gene deletion was confirmed by colony

PCR reactions verifying loss of the CZF1 ORF. In all cases, after confirming the presence of the

desired edit, the Cas9 ORF-gRNA-SAT1 cassette was recycled by plating on Leu/His/Arg drop-

out plates and selecting for recombination events with an intact CmLEU2 ORF. We selected

against both leucine and histidine in order to avoid potential histidine auxotrophies arising

during the recombination process as both CmLEU2 and CdHIS1 are present at the CaLEU2
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locus in this strain background. Consistent with previous reports [73], our czf1 deletion strain

is insensitive to farnesol in regards to inhibition of filamentation.

Two independent isolates were constructed for both the T208A and T208E mutations.

Given the lack of a white-opaque switching phenotype, only one isolate was constructed for

the T181A and T181E mutations. Although only single isolates were constructed for the czf1
deletion and czf1 deletion + Efg1 T208E strains, these two strains are independent of each

other as czf1 was deleted independently in the wild type and Efg1 T208E backgrounds to make

the respective strains.

White-opaque switching assays

White-to-opaque and opaque-to-white switching assays followed previously reported proto-

cols [25, 43, 64]. In brief, strains were allowed to recover from glycerol stocks for seven days

on SCD+aa+Uri plates at 25˚C. After seven days, five colonies per strain that lacked visible sec-

tors of the other cell type were resuspended in water and plated at a concentration of approxi-

mately 100 colonies/plate. The number of plates used varied based on the expected switching

rates and the number of conditions being tested, ranging from as few as five to as many as fif-

teen. Unless otherwise noted, assays were performed on SCD+aa+Uri plates and plates were

incubated for seven days at 25˚C before scoring. For the elevated temperature (37˚C) assays,

plates were incubated for three days and scored on the third day. Three phenotypes were

noted: (1) the number of sectored colonies, (2) the number of fully switched colonies, and (3)

the total number of colonies. The overall switching frequency (called “Overall Switching Fre-

quency” in tables) was calculated as 100 � (number of sectored colonies + number of fully

switched colonies) / total number of colonies. The full colony switching events (called “Full

Colony Switching Events” in tables) was calculated as 100 � number of fully switched colonies

/ total number of colonies. Full Colony Switching Events represent cases where switching

events occurred either prior to or immediately after a cell was plated which resulted in an

entire colony exhibiting the derived rather than parental phenotype (e.g. a full opaque colony

rather than a white colony with one or more opaque sectors). The overall switching rate

includes both of these events as well as events that occurred after a cell was plated which give

rise to one or more sectors. Large increases of the Full Colony Switching Event rate in white-

to-opaque switching assays are typically associated with mutations and/or environmental con-

ditions that strongly drive white-to-opaque switching (e.g. ectopic overexpression of WOR1 or

growth on GlcNAc with 5% CO2) as very high rates of switching are needed in order to pro-

duce full opaque colonies as opposed to white colonies with numerous opaque sectors. If no

switching events were observed, the rate is reported as less than 100 / total number of colonies.

Depending on the basal switching rate in a particular assay, we generally consider three- to

five-fold or greater changes in switching rates to be significant. The number of plates used are

included in the legend of each table. Unless otherwise noted, each table contains data from one

replicate of an experiment conducted in parallel on the same day and all plates with a given

strain were seeded from the same resuspension. Key experiments were repeated on at least two

separate days; data reported in a table are from a representative repeat of a given experiment.

Two independent isolates were screened for the T208E and T208A strains, the data presented

in any given table reflects a single isolate. As the T181A and T181E strains did not have an

interesting switching phenotype, only one isolate was screened for these strains. Only one iso-

late was screened for both the czf1 deletion and czf1 deletion + Efg1 T208E strains however, as

noted above, these two strains are independent of each other (being constructed in the wild

type and Efg1 T208E backgrounds respectively) and similar trends were observed in each case.
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Results

Submicromolar farnesol exposure inhibits white-to-opaque switching

White and opaque cells have different responses to the quorum sensing molecule (E,E)-farne-

sol; white cells produce farnesol and tolerate farnesol concentrations of at least 250 μM with

minimal effects on growth while farnesol concentrations as low as 40 μM result in widespread

opaque cell death [34, 35]. Farnesol is also known to affect the C. albicans yeast-to-hyphal tran-

sition: exposure to 1 μM farnesol results in 50% inhibition of white cell filamentation [74].

Based on farnesol’s known effects, we hypothesized that farnesol concentrations might affect

white-opaque switching. To test this hypothesis, we performed white-to-opaque switching

assays in the presence of either 0.1 μM or 1 μM farnesol. We found that, under standard lab

conditions (glucose at 25˚C), 0.1 μM farnesol decreased wild type white-to-opaque switching

ten-fold with 1 μM farnesol inhibiting switching even further (Table 1). Thus, a farnesol con-

centration roughly one-tenth of that needed to affect the yeast-to-hyphal transition inhibited

white-to-opaque switching by ten-fold. Neither 0.1 μM nor 1 μM farnesol affected the reverse

switching rate, that is switching of opaque cells to white cells (Table 1). The unidirectional

nature of farnesol’s effect is similar to that of many of the gene deletions and environmental

signals that affect white-opaque switching, and is consistent with the apparent independence

of the mechanisms for the establishment and maintenance of the opaque cell type [23, 64, 65].

PKA phosphorylation of Efg1 affects white-opaque switching rates

The transcriptional regulator Efg1 is a core regulator of white-opaque switching but also affects

biofilm formation and the yeast-to-hyphal transition. In the context of white-opaque switch-

ing, Efg1 is crucial to the establishment and maintenance of the white cell type [38, 43, 68, 69,

75–77]. Efg1 is known to be phosphorylated based on the observation that it runs as two or

three distinct bands on denaturing protein gels which collapse to a single band when treated

with phosphatase; subsequent phosphoproteome studies have detected as many as six distinct

phosphorylation events [52, 69, 78–83]. It has also been noted, based on changes in the abun-

dance of different protein species in two-dimensional gels, that the phosphorylation state of

Efg1 is different between yeast and hyphal cells [80]. Based on sequence analyses, Efg1 has

been predicted to be phosphorylated by Cdc28:Hgc1 at Threonine 181 (177-MQQPTPVQD-

185) and by PKA at Threonine 208 (204-RPRVTTTMW-212). As described in the Methods,

these residues are frequently identified as T179 and T206 but correspond to T181 and T208 in

the current SC5314 genome Assembly 22. The putative phosphorylation state of these sites, as

inferred by mutations to these residues, affects both expression of Efg1 and Efg1’s ability to

Table 1. Farnesol switching frequencies. Wild type white-to-opaque and opaque-to-white switching frequencies in the presence of 0 μM (methanol-only control),

0.1μM, and 1μM farnesol scored after seven days growth on SCD+aa+Uri plates at 25˚C. Ten plates were scored per condition.

White-to-Opaque Switching

Strain Farnesol (μM) Overall Switching Frequency (%) Full Colony Switching Events (%) n

Wild Type 0.0 1.39 < 0.13 794

Wild Type 0.1 0.12 < 0.12 823

Wild Type 1.0 < 0.12 < 0.12 867

Opaque-to-White Switching

Strain Farnesol (μM) Overall Switching Frequency (%) Full Colony Switching Events (%) n

Wild Type 0.0 27.67 24.24 524

Wild Type 0.1 28.07 26.12 513

Wild Type 1.0 20.54 18.43 521

https://doi.org/10.1371/journal.pone.0280233.t001
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regulate the yeast-to-hyphal transition [67, 69, 81, 84]. It is important to note that phosphory-

lation of T208 has not been detected in three independent phosphoproteome studies, suggest-

ing that it might be a rare modification [52, 82, 83]. Because multiple components of the PKA

pathway upstream of Efg1 (e.g. GPA2, TPK1, TPK2, BCY1) have also been linked to the regula-

tion of white-opaque switching [23, 51–53], we hypothesized that the phosphorylation state of

Efg1 at either T181 or T208 might have an impact on white-opaque switching rates.

To test this hypothesis, we independently mutated T181 and T208 to glutamic acid (T181E,

T208E), to mimic constitutive phosphorylation, and alanine (T181A, T208A), to create a non-

phosphorylated state. We then determined whether any of these mutations affected white-to-

opaque or opaque-to-white switching under our standard laboratory conditions (glucose at

25˚C). The Efg1 T181E, T181A, and T208A mutants had minimal effects on switching in either

direction and we will not consider them further (Table 2 and S1 Table). The T208E mutant, on

the other hand, increased white-to-opaque switching more than ten-fold and reduced opaque-

to-white switching between three- and ten-fold (Table 2 and S1 Table). We consider the impli-

cations of these results for white-opaque switching in the discussion.

C. albicans switching rates reflect the influence of multiple independent

inputs

Having examined how these inputs affected switching rates in isolation, we next considered

the effect of combining them with each other and with two additional known inputs. We first

considered the effects of farnesol (0.1 μM, 1 μM, or 10 μM), the Efg1 T208E phosphomimetic

mutation, and GlcNAc (in different pairwise combinations) on white-to-opaque switching

(Table 3 and S2 Table). When we combined an input that increased white-to-opaque switching

(either the T208E phosphomimetic or GlcNAc) with an input that decreased white-to-opaque

switching (farnesol), we observed an intermediate switching rate that was lower than either the

T208E phosphomimetic or GlcNAc by themselves but was higher than that observed for farne-

sol by itself (Table 3 and S2 Table). When we combined the two inputs that increased white-

to-opaque switching (the T208E phosphomimetic and GlcNAc), we observed an additive effect

where the switching rate was higher than either input by itself (two- to three-fold higher than

the T208E phosphomimetic on glucose and 14- to 20-fold higher rate than the wild type strain

Table 2. Efg1 phosphomimetic switching frequencies. White-to-opaque and opaque-to-white switching frequencies

for wild type and T181 and T208 Efg1 phosphomimetic strains scored after seven days growth on SCD+aa+Uri plates

at 25˚C. Six plates were scored per condition.

White-to-Opaque Switching

Strain Overall Switching Frequency (%) Full Colony Switching Events (%) n

Wild Type 1.68 < 0.21 477

Efg1 T208E 21.65 < 0.22 462

Efg1 T208A 3.43 < 0.21 467

Efg1 T181E 1.66 < 0.21 482

Efg1 T181A 2.96 < 0.15 676

Opaque-to-White Switching

Strain Overall Switching Frequency (%) Full Colony Switching Events (%) n

Wild Type 20.83 19.79 288

Efg1 T208E 1.89 1.18 424

Efg1 T208A 13.82 13.39 463

Efg1 T181E 14.75 12.84 366

Efg1 T181A 12.01 11.17 358

https://doi.org/10.1371/journal.pone.0280233.t002
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on GlcNAc) (Table 3). We note that this high rate of switching was dependent on the presence

of the T208E phosphomimetic mutation, neither the wild type nor the T208A mutant dis-

played a similar phenotype on GlcNAc (Table 3 and S3 Table). Much of this increase in the

switching rate stems from a 40- to 160-fold increase in early switching events giving rise to

fully opaque colonies (rather than white colonies with one or more opaque sectors) (Table 3).

This behavior is similar to the previously reported phenotype associated with the bcy1 deletion

(which results in constitutive activation of the PKA kinase) on GlcNAc [53].

Given the additive effect of the T208E phosphomimetic and GlcNAc inputs on white-to-

opaque switching rates, we next evaluated how these combined inputs interacted with the

effect of temperature. In glucose media at 25˚C, opaque cells are stable through many cell divi-

sions, but when the temperature is raised to 37˚C, opaque cells switch en masse to white cells.

Likewise, growth at 37˚C normally prevents white-to-opaque switching [12, 36]. We observed

occasional white-to-opaque switching events at 37˚C with the T208E phosphomimetic mutant

on GlcNAc, albeit at a much lower rate than was observed for either of those inputs by them-

selves at 25˚C (Table 4). This result suggests that the T208E mutation can override, at least to

some extent, the dramatic effect caused by an increase in temperature.

Farnesol affects white-opaque switching in a CZF1-independent manner

Farnesol’s inhibition of the yeast-to-hyphal transition is dependent on the transcriptional reg-

ulator Czf1: a czf1 deletion strain fails to be inhibited [73]. Czf1 is also important for the estab-

lishment of the opaque cell type and for proper expression of a subset of the opaque cell

transcriptional program [43, 44, 46]. We tested whether Czf1 was needed for farnesol’s effect

on white-to-opaque switching and we found that the czf1 deletion strain’s white-to-opaque

switching rates were still reduced when exposed to 1 μM farnesol (Table 5). We observed this

result for the czf1 deletion strain when GlcNAc was the carbon source and in a czf1 deletion

combined with the Efg1 T208E mutation when either glucose or GlcNAc were the carbon

Table 3. White-to-opaque farnesol, Efg1 phosphomimetic, and GlcNAc switching frequencies. White-to-opaque switching frequencies for the wild type and Efg1

T208E strains scored after seven days growth at 25˚C on SCD+aa+Uri or SCGlcNAc+aa+Uri plates in the presence of 0 μM (methanol-only control), 0.1μM, 1μM, or

10 μM farnesol. Five plates were scored per condition.

White-to-Opaque Switching

Strain Media Farnesol (μM) Overall Switching Frequency (%) Full Colony Switching Events (%) n

Wild Type SCD+aa+Uri 0.0 1.39 0.20 502

Wild Type SCD+aa+Uri 0.1 0.21 < 0.21 484

Wild Type SCD+aa+Uri 1.0 < 0.20 < 0.20 501

Wild Type SCD+aa+Uri 10.0 < 0.22 < 0.22 452

Wild Type SCGlcNAc+aa+Uri 0.0 2.92 0.19 514

Wild Type SCGlcNAc+aa+Uri 0.1 0.90 0.45 444

Wild Type SCGlcNAc+aa+Uri 1.0 1.16 0.23 431

Wild Type SCGlcNAc+aa+Uri 10.0 0.82 < 0.21 485

Efg1 T208E SCD+aa+Uri 0.0 19.73 0.53 375

Efg1 T208E SCD+aa+Uri 0.1 2.35 < 0.29 341

Efg1 T208E SCD+aa+Uri 1.0 2.25 < 0.28 355

Efg1 T208E SCD+aa+Uri 10.0 0.93 < 0.31 322

Efg1 T208E SCGlcNAc+aa+Uri 0.0 41.54 22.55 337

Efg1 T208E SCGlcNAc+aa+Uri 0.1 2.44 0.54 369

Efg1 T208E SCGlcNAc+aa+Uri 1.0 3.67 0.31 327

Efg1 T208E SCGlcNAc+aa+Uri 10.0 1.69 < 0.28 354

https://doi.org/10.1371/journal.pone.0280233.t003
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source (Table 5). These results suggest that although farnesol’s inhibition of filamentation

depends on Czf1, its effect on white-to-opaque switching does not.

Discussion

Here, we report that the putative PKA phosphorylation of residue T208 on the transcrip-

tional regulator Efg1 increases white-to-opaque switching rates and that exposure to sub-

micromolar concentrations of (E,E)-farnesol decreases white-to-opaque switching rates in C.

albicans. Farnesol did not affect the reverse transition, opaque-to-white switching rates (at

25˚C on glucose), a unidirectional effect that had been observed previously for other muta-

tions and environmental conditions [23, 64, 65]; these results further underscore the inde-

pendence of the mechanisms for the establishment versus the maintenance of the opaque cell

type. Unlike the yeast-to-hyphal transition, where farnesol’s negative effects are mediated by

Czf1, we found that Czf1 was not required for farnesol to affect white-to-opaque switching,

suggesting that the two effects are mediated, at least in part, through different signaling

pathways.

Table 4. 37˚C switching assays. White-to-opaque switching frequencies for the wild type and T208E Efg1 phosphomimetic strains grown for either three days at 37˚C or

seven days at 25˚C on either SCD+aa+Uri or SCGlcNAc+aa+Uri plates. Five plates were scored per condition.

White-to-Opaque Switching

Strain Media Temperature (˚C) Overall Switching Frequency (%) Full Colony Switching Events (%) n

Wild Type SCD+aa+Uri 25 1.98 < 0.28 353

Wild Type SCD+aa+Uri 37 < 0.25 < 0.25 406

Wild Type SCGlcNAc+aa+Uri 25 4.30 < 0.29 349

Wild Type SCGlcNAc+aa+Uri 37 < 0.28 < 0.28 351

Efg1 T208E SCD+aa+Uri 25 23.32 0.26 386

Efg1 T208E SCD+aa+Uri 37 < 0.32 < 0.32 310

Efg1 T208E SCGlcNAc+aa+Uri 25 64.13 41.67 276

Efg1 T208E SCGlcNAc+aa+Uri 37 0.69 0.69 290

https://doi.org/10.1371/journal.pone.0280233.t004

Table 5. czf1 deletion farnesol white-to-opaque switching assays. White-to-opaque switching frequencies for the wild type, czf1 deletion, T208E Efg1 phosphomimetic,

and czf1 deletion plus T208E Efg1 phosphomimetic strains grown for seven days on either SCD+aa+Uri or SCGlcNAc+aa+Uri plates. Five plates were scored per condition

for the T208E Efg1 phosphomimetic and the czf1 deletion plus T208E Efg1 phosphomimetic strains, fifteen plates were scored per condition for the wild type and czf1 dele-

tion strains.

White-to-Opaque Switching

Strain Media Farnesol (μM) Overall Switching Frequency (%) Full Colony Switching Events (%) n

Wild Type SCGlcNAc+aa+Uri 0.0 1.83 0.08 1313

Wild Type SCGlcNAc+aa+Uri 1.0 0.55 < 0.08 1269

Δ/Δczf1 SCGlcNAc+aa+Uri 0.0 0.51 0.17 1167

Δ/Δczf1 SCGlcNAc+aa+Uri 1.0 0.08 < 0.08 1277

Efg1 T208E SCD+aa+Uri 0.0 19.09 < 0.30 330

Efg1 T208E SCD+aa+Uri 1.0 1.10 < 0.27 365

Δ/Δczf1 + Efg1 T208E SCD+aa+Uri 0.0 1.54 < 0.26 389

Δ/Δczf1 + Efg1 T208E SCD+aa+Uri 1.0 < 0.24 < 0.24 410

Efg1 T208E SCGlcNAc+aa+Uri 0.0 37.85 19.95 391

Efg1 T208E SCGlcNAc+aa+Uri 1.0 1.36 < 0.27 367

Δ/Δczf1 + Efg1 T208E SCGlcNAc+aa+Uri 0.0 14.62 10.21 431

Δ/Δczf1 + Efg1 T208E SCGlcNAc+aa+Uri 1.0 0.70 < 0.23 430

https://doi.org/10.1371/journal.pone.0280233.t005
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Because farnesol can act as a quorum sensing molecule, our results suggest that population

density could affect the frequency of white-to-opaque switching. Saturated cultures of white

cells have been reported to have farnesol concentrations ranging from 13 to 59 μM [85], well

above the concentrations that eliminated white-to-opaque switching in our study (at 25˚C on

glucose). This result suggests that switching to the opaque cell type would be favored in rela-

tively dilute cultures.

Our results also provide insight into the signaling pathways that influence the regulation of

white-opaque switching and how the white-opaque regulatory circuit incorporates informa-

tion from multiple pathways. The phenotype of the Efg1 T208E phosphomimetic resembles

that of the constitutively active PKA mutant (the bcy1 deletion) [53] and we hypothesize that

the cAMP/PKA pathway’s effects on white-opaque switching are at least partially mediated

through phosphorylation of Efg1 at residue T208. Our demonstration that an Efg1 phosphory-

lation mimic at this residue affects white-opaque switching suggests a link between the previ-

ous observations that (1) Efg1 regulates white-opaque switching, (2) that deletion of cAMP/

PKA signaling pathway genes affects white-opaque switching rates, and (3) the inference that

Efg1 is phosphorylated by PKA at T208 [23, 38, 43, 52, 53, 67–69, 76, 81, 84, 86]. Still, it is

important to note that PKA-related phosphorylation of T208 has yet to be experimentally veri-

fied and was not detected in three independent phosphoproteome studies. We note, however.

that these three studies were conducted under conditions (e.g. 37˚C) optimized for hyphal

growth rather than white-opaque switching [52, 82, 83], and it is possible that the steady-state

of T208 phosphorylation is low. It remains to be definitively determined whether Efg1 is

indeed phosphorylated at the T208 site.

Assuming the PKA-T208 phosphorylation hypothesis is correct, it suggests that PKA signal-

ing through this residue affects switching rates but, under normal laboratory conditions (room

temperature, glucose, ambient air), has only a moderate effect and does not eliminate the

effects of other signals (e.g. farnesol) which in many cases may be dominant. The T208E

switching results suggest that putative phosphorylation of T208 promotes the establishment

and/or maintenance of the opaque cell type; however, the results of the T208A mutation sug-

gest that phosphorylation of this residue is not required. Such a result is not unprecedented:

overexpression of Wor3 increased white-to-opaque switching but its deletion had little or no

effect [48]. The results observed when we combined inputs to white-opaque switching were

not always “additive”, indicating that the process that integrates the different inputs is com-

plex. For example, the additive effects of the Efg1 T208E phosphomimetic and GlcNAc, com-

pared to the intermediate effects of T208E and farnesol, illustrate the complex nature of the

integration process and suggest that some inputs may be relatively independent. For example,

our results, in which GlcNAc and the T208E phosphomimetic have an additive effect, are con-

sistent with recent reports that GlcNAc does not signal through the cAMP/PKA pathway [87,

88]. Likewise, farnesol is known to affect Cek1-, Hog1-, and Chk1-mediated signaling in addi-

tion to its effects on the cAMP/PKA pathway [89–91]. As such, the intermediate switching

effect seen for the combination of farnesol and the T208E phosphomimetic could reflect farne-

sol’s effects on one or more of these other pathways, at least two of which are known to affect

white-opaque switching [51, 54, 56].

In summary, our results indicate that C. albicans integrates multiple inputs to determine

the final white-opaque switching rate and that multiple weaker inputs can override the effect

of a normally strong input such as growth at 37˚C. The abnormally large control regions

upstream of the core regulator genes of white-opaque switching and the numerous mutations

affecting switching rates suggest that C. albicans integrates a great deal of information to con-

trol the balance between the two cell types.
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17. Morschhäuser J. Regulation of white-opaque switching in Candida albicans. Med Microbiol Immunol.

2010; 199: 165–172.

18. Pujol C, Daniels KJ, Lockhart SR, Srikantha T, Radke JB, Geiger J, et al. The closely related species

Candida albicans and Candida dubliniensis can mate. Eukaryot Cell. 2004; 3: 1015–1027.

19. Porman AM, Alby K, Hirakawa MP, Bennett RJ. Discovery of a phenotypic switch regulating sexual mat-

ing in the opportunistic fungal pathogen Candida tropicalis. Proc Natl Acad Sci USA. 2011; 108: 21158–

21163.

20. Beekman CN, Cuomo CA, Bennett RJ, Ene IV. Comparative genomics of white and opaque cell states

supports an epigenetic mechanism of phenotypic switching in Candida albicans. G3 (Bethesda). 2021;

11: jkab001. https://doi.org/10.1093/g3journal/jkab001 PMID: 33585874

21. Lan C, Newport G, Murillo L, Jones T, Scherer S, Davis R, et al. Metabolic specialization associated

with phenotypic switching in Candida albicans. Proc Natl Acad Sci USA. 2002; 99: 14907–14912.

22. Tuch BB, Mitrovich QM, Homann OR, Hernday AD, Monighetti CK, De La Vega FM, et al. The transcrip-

tomes of two heritable cell types illuminate the circuit governing their differentiation. PLoS Genet. 2010;

6: e1001070. https://doi.org/10.1371/journal.pgen.1001070 PMID: 20808890
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opaque switching in Candida albicans. PLoS Pathog. 2008; 4: e1000089.

87. Parrino SM, Si H, Naseem S, Groudan K, Gardin J, Konopka JB. cAMP-independent signal pathways

stimulate hyphal morphogenesis in Candida albicans. Mol Microbiol. 2017; 103: 764–779.

88. Su C, Yu J, Sun Q, Liu Q, Lu Y. Hyphal induction under the condition without inoculation in Candida albi-

cans is triggered by Brg1-mediated removal of NRG1 inhibition. Mol Microbiol. 2018; 108: 410–423.

https://doi.org/10.1111/mmi.13944 PMID: 29485686

89. Kruppa M, Krom BP, Chauhan N, Bambach AV, Cihlar RL, Calderone RA. The two-component signal

transduction protein Chk1p regulates quorum sensing in Candida albicans. Eukaryot Cell. 2004; 3:

1062–1065. https://doi.org/10.1128/EC.3.4.1062-1065.2004

90. Smith DA, Nicholls S, Morgan BA, Brown AJP, Quinn J. A conserved stress-activated protein kinase

regulates a core stress response in the human pathogen Candida albicans. Mol Biol Cell. 2004; 15:

4179–4190. https://doi.org/10.1091/mbc.e04-03-0181 PMID: 15229284

91. Román E, Alonso-Monge R, Gong Q, Li D, Calderone R, Pla J. The Cek1 MAPK is a short-lived protein

regulated by quorum sensing in the fungal pathogen Candida albicans. FEMS Yeast Res. 2009; 9: 942–

955. https://doi.org/10.1111/j.1567-1364.2009.00545.x PMID: 19656200

PLOS ONE Farnesol and phosphorylation of Efg1 affect C. albicans white-opaque switching rates

PLOS ONE | https://doi.org/10.1371/journal.pone.0280233 January 20, 2023 14 / 14

https://doi.org/10.1016/j.cell.2011.10.048
https://doi.org/10.1016/j.cell.2011.10.048
http://www.ncbi.nlm.nih.gov/pubmed/22265407
https://doi.org/10.1128/EC.00148-14
http://www.ncbi.nlm.nih.gov/pubmed/25001410
https://doi.org/10.1371/journal.pgen.1005447
https://doi.org/10.1371/journal.pgen.1005447
http://www.ncbi.nlm.nih.gov/pubmed/26274602
https://doi.org/10.1128/EC.00011-15
http://www.ncbi.nlm.nih.gov/pubmed/25750214
https://doi.org/10.1371/journal.ppat.1009861
http://www.ncbi.nlm.nih.gov/pubmed/34398936
https://doi.org/10.1128/AAC.01646-07
https://doi.org/10.1128/AAC.01646-07
http://www.ncbi.nlm.nih.gov/pubmed/18332168
https://doi.org/10.1111/mmi.13944
http://www.ncbi.nlm.nih.gov/pubmed/29485686
https://doi.org/10.1128/EC.3.4.1062%26%23x2013%3B1065.2004
https://doi.org/10.1091/mbc.e04-03-0181
http://www.ncbi.nlm.nih.gov/pubmed/15229284
https://doi.org/10.1111/j.1567-1364.2009.00545.x
http://www.ncbi.nlm.nih.gov/pubmed/19656200
https://doi.org/10.1371/journal.pone.0280233

